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MATHEMATICAL MODELING OF FLOWS INSIDE ROTATING BODIES

MADE OF CELLULAR-POROUS MATERIALS

UDC 532.546A. V. Fedorov, V. M. Fomin, and T. A. Khmel’

A physicomathematical model is developed, which describes gas flows inside rapidly rotating bod-
ies made of cellular-porous materials. Asymptotic and numerical solutions are obtained for some
problems of forced centrifugal convection inside cylindrical cellular-porous bodies. The effect of the
governing parameters (drag coefficient and dimensionless length of the cylinder) on characteristics
and types of flows is considered.
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Introduction. The development of manufacturing technologies of cellular-porous materials (CPM) offers
vast prospects of their application in engineering for various burners and energy converters [1, 2]. The necessity of
studying internal and external flows for bodies partly or completely made of these materials requires approaches
to be developed to describe internal aerodynamics under various conditions. In particular, during rotation of CPM
bodies, a forced convective flow caused by centrifugal forces is formed inside and around the bodies. An analysis
of characteristics and modeling of such flows are interesting from the viewpoint of possible controlling mass and
energy fluxes and forming desirable hydrodynamic structures.

Flows inside rotating porous materials were previously studied under the assumption that the angular velocity
is low. This made it possible to obtain asymptotic and numerical solutions for some problems of thermal convection
within the framework of the filtration theory and its modification with allowance for rotational motion [3–7].
Currently produced cellular-porous materials possess high permeability (about 0.95) and comparatively low drag.
For practical applications indicated above, of interest is to consider processes with a high velocity of revolution of
bodies (1000–5000 rpm). Under these conditions, assumptions of the linear filtration theory, which allow neglecting
convective terms, are inapplicable. Therefore, the problem should be considered in a nonlinear formulation, i.e.,
with allowance for convective and inertial terms in equations of conservation of momentum.

The objectives of the present work are to develop a nonlinear physicomathematical model to describe gas
flows inside rapidly rotating CPM bodies, to obtain some asymptotic solutions, and to analyze the influence of the
governing parameters on characteristics of the flow.

Physicomathematical Model. We consider a CPM body rotating with a certain angular velocity. Because
of centrifugal forces, a forced convective flow is formed inside this body with a corresponding flow formed outside
the body. We have to determine the parameters of the internal gas flow, which is necessary, e.g., for finding loads
acting on the body. An important problem is also determining the characteristics of the external air flow.

As the size of inhomogeneities in cellular-porous materials is much smaller than the characteristic microscopic
size, the description can be made in terms of approaches of mechanics of heterogeneous media. The CPM structure
is considered as a homogeneous permeable phase whose action on the second phase (liquid or gas) flowing through
the first one is manifested only as a drag force. Because of high permeability, flow constriction inside the porous
structure can be neglected. Then the interaction force reduces to friction drag only. We restrict our consideration
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to subsonic flows, the effects of compressibility, thermal convection, gravity force, and viscous dissipation being
neglected at the first stage. Therefore, gas viscosity will be taken into account only in the term that describes the
force of gas interaction with the porous structure.

First, we study a three-dimensional steady axisymmetric isothermal gas flow inside a porous cylindrical body
rotating with a constant velocity. The equations in dimensionless variables in the laboratory (with respect to a
motionless observer) cylindrical coordinate system (r, z, θ) fixed at the axis of revolution have the following form:

∂ur
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+

∂vr

∂z
= 0,

∂u2r

∂r
+

∂uvr
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∂p

∂r
+ w2 − rfr,

∂uvr

∂r
+

∂v2r

∂z
= −r

∂p

∂z
− rfz ,

∂uwr

∂r
+

∂vwr

∂z
= −uw − rfθ.

(1)

Here p is the pressure, u, v, and w are the radial, longitudinal, and tangential components of velocity, and f is the
specific volume force that describes gas interaction with the porous structure. The following characteristic scales
of the problem are introduced: angular velocity of revolution Ω, characteristic length, which is the outer radius of
the cylinder R, characteristic velocity RΩ, gas density under standard conditions ρ0, pressure scale p0 = ρ0R

2Ω2,
and time scale 1/Ω.

The particular form of the specific volume force depends on certain conditions. If the velocity of revolution
is rather high, the force of interaction between the gas and the porous skeleton can be presented as a quadratic
dependence f = K|v − vs|(v − vs). Here vs = riθ is the velocity of a volume element of the rotating body and
K = kR, where k is the drag coefficient depending on material properties, porosity, and gas viscosity. We will also
consider a linear law, which is valid for low filtration rates, f = L(v − vs), L = λ/Ω, where λ is the coefficient in
the filtration law. Beklemyshev [8] described the experimental results for the drag coefficient of various CPMs and
a two-term dependence where the specific volume force f is presented as a linear combination of two formulas given
above.

One-Dimensional Swirl Flows. Swirl flows whose parameters depend on the radius only are encountered,
e.g., in disks that have an inner cavity and are closed by impermeable walls on butt-end faces [9]. When such a
disk rotates, the gas freely flows from the outer area into the inner cavity of radius r0, passes through the porous
material, and leaves through the outer surface r = 1. For a steady flow, Eqs. (1) reduce to a system of ordinary
differential equations

dur

dr
= 0,

du2r

dr
= −r

dp

dr
+ w2 − rfr,

duwr

dr
= −uw − rfθ, (2)

which directly yield the quantity u = q/r (q is a constant quantity characterizing the flow rate). The boundary-
value problem for system (2) is posed in accordance with physical conditions. The pressure is determined with
accuracy to a constant defined by conditions at infinity. If a constant flow rate of the gas through the porous body
is somehow maintained, we have u = q0/r. In this case, one condition for w is sufficient, e.g., w(r = r0) = 0 (absence
of swirling of the incoming flow on the inner surface). If the body is located in free space, an additional condition
determining the flow rate can be obtained from the Bernoulli integral for the incoming and outgoing flows. (In [9],
the corresponding condition is written in the general form with allowance for friction and pressure losses.)

For a linear law of drag [fr = Lu and fθ = L(w − r)], the solution is determined analytically; for w(r0) = 0,
it has the form

w =
(
r − 1

αr

)
− r0

r

(
r0 − 1

αr0

)
exp [−α(r2 − r2

0)], α =
L

2q
. (3)

For a quadratic law of drag, we have fr = Ku
√

u2 + (w − r)2 and fθ = K(w− r)
√

u2 + (w − r)2, and the problem
reduces to solving the equations

u =
q

r
,

dW

dr
− 2r

q
= −KW

√
1 + W 2, W = −r(w − r)

q
. (4)

For small r, W is also small; then, with accuracy to W 2, we can replace the right side of the second equation in (4)
by −KW and obtain the asymptotic solution

w = r − 2
K

+
2

K2r
− r0

r

(
r0 − 2

K
+

2
K2r0

)
exp [−K(r − r0)]. (5)
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Fig. 1. Azimuthal velocity (a) and pressure (b) of a plane swirl flow inside a disk with closed end
faces (r0 = 0.2).

The distributions of the azimuthal velocity obtained by numerically solving Eqs. (4) with different values
of q are plotted by solid curves in Fig. 1; the dashed curves refer to the asymptotic solutions (5). For q > 1, good
agreement is obtained in the entire domain under consideration, up to the outer boundary. As the drag parameter K

increases, the range of admissible values of q becomes wider. In particular, for K = 20, the asymptotic solution and
the curves obtained numerically for q = 0.1 and q = 10 almost coincide. The functions w(r) in the dependences on
L for the linear law of drag behave in a similar manner.

If there are no obstacles (e.g., casing) restricting gas motion around the rotating porous body, the flow rate
can be determined with the use of the Bernoulli integral for the internal flow:

∆p = p1 − p0 = (u2
0 + w2

0 − u2
1 − w2

1)/2. (6)

It follow from (6) and the second equation of system (2) that

−w2
1 = 2

1∫

r0

(w2

r
− fr

)
dr. (7)

It is possible to solve Eq. (7) together with system (2) for both the linear and the quadratic law of drag numerically,
by the method of iterations. The calculated dependences of the flow rate on K for different values of r0 are shown
in Fig. 2a by the solid curves.

To obtain an approximate value of the flow rate without solving the full problem, one can use the following
asymptotic estimates. For small α = L/(2q), Eqs. (3) and (7) predict q = 3

√
3L2/(32 ln (1/r0)). This approximation

is admissible for α < 0.1 and imposes a stringent restriction on the value of L (e.g., up to 0.003 for r0 = 0.05 and
up to 0.0006 for r0 = 0.2). In the opposite case with α � 1, with allowance for the fact that the solution w(r) is
rather close to a linear function for α = 1/(2r2

0) and rather small r0, the estimate q ≈ 1/(L ln (1/r0)) is valid, which
ensures a good approximation for r0 < 0.2 and L > 8. For the quadratic law of drag, the asymptotic solution (5)
for (w − r)/q � 1/r yields an approximate estimate

q =
{ r0

2K(1 − r0)

[
w2

1 + 2

1∫

r0

w2

r
dr

]}1/2

. (8)

Solution (8) (dashed curves in Fig. 2a) can be used to determine the flow rate for high values of K and rather small
values of r0: r0 < 0.5 and K > 5. For both laws of drag, the flow-rate dependence on the drag parameter K(L)
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Fig. 2. Flow rate (a) and moment (b) versus the drag parameter and inner radius.

is nonmonotonic and has a maximum point (optimal structure) whose position and magnitude depend on r0. The
second specific feature implies that an increase in the inner radius to 0.8–0.9 increases the flow rate and shifts the
maximum point toward higher values of L and K and higher values of the inner radius (about 0.9). These features
of the flow-rate behavior were also noted in [9].

The moment of the force necessary to sustain rotation of the porous disk with a given constant angular
velocity is compensated by the integral moment of the azimuthal drag force and the external drag force, which is
substantially smaller. Neglecting the latter, we obtain

M =

1∫

r0

2πr2fθ dr.

The moment as a function of the parameter K is plotted in Fig. 2b. This dependence has a maximum point too,
but it does not coincide with the maximum point for the flow rate. The maximum value of the flow rate is located
on the ascending part of the curves in the dependences M(K) [and also M(L)]; hence, the quantity q/M also has a
maximum point in terms of L or K for each fixed value of r0. The maximum point indicates the optimal structure
in terms of the flow rate to moment ratio.

The pressure p is determined from Eq. (1) and, for p∞ = 0, can be presented as

p = − q2

2r2
+

r∫

r0

(w2

r
− fr

)
dr.

In Fig. 1b, the distributions of p are plotted for the case where the rotating disk is located in free unbounded
space, and the flow rate is determined with allowance for Eq. (7). The pressure profiles depend qualitatively both
on the drag parameters (which is seen in Fig. 1b) and on the inner radius. For r0 = 0.2 and low values of K (or L),
the pressure monotonically increases and reaches a maximum at the exit. With increasing drag parameter, local
maximums and local minimums inside the domain appear. The point of the local maximum is shifted to the left
with increasing L and K or with increasing r0 and reaches the boundary r = r0. The point of the local minimum
is shifted to the right with increasing r0 and reaches the boundary; hence, for r0 = 0.8, the pressure decreases with
increasing r for all K > 1. As it follows from the analysis of the second equation of system (2), the complicated
behavior of pressure is caused by the simultaneous influence of the convective term du2r/dr = −(q/r)2, centrifugal
force depending on w2, and drag force fr. The flow rate q is also a complex function of the drag parameter and r0.
It is possible to determine conditions for the pressure inside the disk to be close to a constant value. For instance,
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Fig. 3. Flow inside a rotating cylindrical body made of a CPM with a linear law of drag: isolines of
parameters in the z–r plane (a) and dependence of solutions on the drag parameter L (b) and on
inclination of the incoming flow U0 (c).

the smallest difference between the maximum and minimum values is observed for K ≈ 3.5 (r0 = 0.2), K ≈ 1
(r0 = 0.5), and K ≈ 0.4 (r0 = 0.8). The total pressure P = p + (u2 + v2 + w2)/2 under given boundary conditions
equals zero for r = r0 and r = 1; therefore, there is always a local minimum inside the domain. The higher the
drag parameter, the lower the value of P at this point.

Spatial Swirl Flows with Axial Symmetry. Let us further consider rotation of a porous cylinder of
finite length H , whose surface is completely permeable. Under the action of centrifugal convection forces, the
inflow occurs through the butt-end planes z = 0 and z = 2z0 (z0 = H/2R), and the outflow proceeds through the
surface r = 1. To obtain complete information about the gas flow through porous bodies, generally speaking, one
has to solve a conjugate problem, i.e., consider the internal and external flows in a coupled manner. Under certain
conditions, particular solutions can be obtained for the internal flow. These solutions can be further used for testing
the numerical method for calculating the two-dimensional internal flow in the general case and for comparisons with
the solution of the conjugate problem for internal and external flows.
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For the linear law of drag, the equations of steady motion admit a particular solution of the form u(r, z)
= rU(z), v(r, z) = V (z), w(r, z) = rW (z), and p(r, z) = P (z) + P0r

2, and the functions U(z), V (z), W (z), and
P (z) satisfy the system of ordinary differential equations

dV

dz
= −2U,

dU

dz
=

W 2 − U2 − LU − 2P0

V
,

dP

dz
= 2UV − LV,

dW

dz
= −2UW + L(W − 1)

V
.

(9)

The incoming flow (z = 0) has three velocity components. The radial component is determined by the
prescribed constant U0; u(r, 0) = U0r and P0 = −0.5U2

0 . The value of the axial component of velocity at the
entrance is unknown, but it should be equal to zero at the axis of symmetry (z = z0). It is assumed that the
azimuthal velocity at the entrance is equal to zero (no swirl of the external flow), and the pressure is determined
from the Bernoulli integral. The corresponding boundary conditions for system (9) are

z = 0: U = U0, W = 0, P = p∞ − 0.5V 2; z = z0: V = 0. (10)

The solution of the boundary-value problem (9), (10) is found by the numerical shooting method: a value
of V (0) is chosen for which the solution of the Cauchy problem satisfies the condition V (z0) = 0.

The calculated results are plotted in Fig. 3. Figure 3a shows the isolines of the main parameters for L = 1,
U0 = 0, and z0 = 0.5; the dependences of the sought functions on the parameter L for U0 = 0 and z0 = 1 are
displayed in Fig. 3b. It is seen that the azimuthal velocity is the most sensitive characteristic in terms of the drag
coefficient. The nonmonotonic behavior of the velocity components u and w (correspondingly, dynamic pressure and
total pressure P ) at the exit (side) surface of the cylinder should be noted, which was also observed in experiments.

Note that the condition of parallelism of the incoming flow and the axis of symmetry U0 = 0 seems to be
limited to a certain extent, because it does not ensure conjugation with the external flow. Therefore, we considered
the effect of flow deflection (value of U0) on the solution; the results are plotted in Fig. 3c (L = 0.5 and z0 = 0.2).
The axial velocity changes insignificantly, and the radial velocity becomes nonmonotonic with increasing U0.

The influence of the geometrical parameters (dimensionless length of the cylinder) can be estimated by
comparing the curves corresponding to U0 = 0 and L = 0.5 in Figs. 3b and 3c. A decrease in the dimensionless
length of the cylinder z0 from 1 to 0.2 affects the value of the axial velocity V and has almost no influence on the
distributions and maximum values of U and W .

The solutions obtained and their properties described above can be used to solve the full problem of internal
and external flows and as test solutions in developing a numerical algorithm for calculating the problem with a
general law of drag.

Conclusions. The study performed was crowned by the following results.
A physicomathematical model was developed to study incompressible gas flows inside rapidly rotating bodies

made of cellular-porous materials.
Asymptotic and numerical solutions were obtained for one-dimensional swirl flows inside cellular-porous

materials with different laws of drag; a qualitatively different behavior of pressure versus the drag parameter was
demonstrated.

Numerical solutions were obtained for a two-dimensional flow inside an open rotating cylindrical body with a
linear law of drag of its structure; the influence of the geometrical parameters of the problem and the drag parameter
on the solution was considered; the solutions were found to depend on the incoming flow direction, which indicates
that it is necessary to solve a conjugate problem with allowance for the external flow.

The model developed and the solutions obtained can be used to solve the full problem of internal and
external gas flows in the case of rotation of CPM bodies. The model can also be extended with allowance for
viscous dissipation, heat transfer, and chemical reactions.

This work was partly supported by the Russian Foundation for Basic Research (Grant No. 03-01-00453)
within the framework of the Integration Project No. 83 of the Siberian Division of the Russian Academy of Sciences.
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